Thermodynamic theory for thermal-gradient-driven domain-wall motion
نویسندگان
چکیده
منابع مشابه
Thermodynamic magnon recoil for domain wall motion
We predict a thermodynamic magnon recoil effect for domain wall motions in the presence of temperature gradients. All current thermodynamic theories assert that a magnetic domain wall must move toward the hotter side, based on equilibrium thermodynamic arguments. Microscopic calculations, on the other hand, show that a domain wall can move either along or against the direction of heat currents,...
متن کاملRole of entropy in domain wall motion in thermal gradients.
Thermally driven domain wall (DW) motion caused solely by magnonic spin currents was forecast theoretically and has been measured recently in a magnetic insulator using magneto-optical Kerr effect microscopy. We present an analytical calculation of the DW velocity as well as the Walker breakdown within the framework of the Landau Lifshitz Bloch equation of motion. The temperature gradient leads...
متن کاملRashba Torque Driven Domain Wall Motion in Magnetic Helices
Manipulation of the domain wall propagation in magnetic wires is a key practical task for a number of devices including racetrack memory and magnetic logic. Recently, curvilinear effects emerged as an efficient mean to impact substantially the statics and dynamics of magnetic textures. Here, we demonstrate that the curvilinear form of the exchange interaction of a magnetic helix results in an e...
متن کاملInertia-Free Thermally Driven Domain-Wall Motion in Antiferromagnets.
Domain-wall motion in antiferromagnets triggered by thermally induced magnonic spin currents is studied theoretically. It is shown by numerical calculations based on a classical spin model that the wall moves towards the hotter regions, as in ferromagnets. However, for larger driving forces the so-called Walker breakdown-which usually speeds down the wall-is missing. This is due to the fact tha...
متن کاملCurrent-Driven Domain Wall Motion: Velocity, Current and Phase Transition
The relation between domain wall motion and intensity of driven current is examined in a phenomenological theory where the kinetic energy is expanded as a series of polynomial function of current density just as the Landau phase transition theory. The dependency of velocity on current density is square root which degenerates into linear if the current is much higher than the critical value. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2014
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.90.014414